

NNN JJJ DDD XXX 111...555
...NNNEEETTT JJJeeettt DDDaaatttaaabbbaaassseee EEExxxccchhhaaannngggeee

UUUSSSEEERRR MMMAAANNNUUUAAALLL

.NET Jet Database Exchange (NJDXTM)
Version 1.5

NJDX User Manual

Software Tree, Inc.
2953 Bunker Hill Lane, Suite 400

Santa Clara, CA 95054
Phone: 408-282-3606
Fax: 408-282-3501

http://www.softwaretree.com

http://www.softwaretree.com/

The information contained in this document is copyrighted and all rights are reserved to Software Tree, Inc.
No part of this documentation may be produced, stored in a retrieval system, or transmitted in any form or by
any means-electronic, mechanical, photocopying, recording, or otherwise - without the prior written
permission of Software Tree, Inc.

US Patent 6,163,776 protects technologies described herein.

Software Tree, Software Tree, Inc., Software Tree logo, .NET Jet Database Exchange, NJDX, NJDXStudio
(NJDX add-in), J-Database Exchange, JDX, JDXStudio, The KISS OR-Mapper, J-Exchange, and JX are
trademarks of Software Tree, Inc.

.NET, Windows NT/2000/XP are registered trademarks of Microsoft Corporation. Java and JDBC are
trademarks or registered trademarks of Sun Microsystems. UNIX is a registered trademark of UNIX Systems
Laboratories, Inc. All other brand and product names are trademarks or registered trademarks of their
respective holders.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION MAY INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. SOFTWARE TREE, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
PRODUCT (S) AND/OR THE PROGRAM (S) DESCRIBED IN THIS PUBLICATION AT ANY TIME

© 1997-2006 Software Tree, Inc., All Rights Reserved

Contents

Introduction.. 7

OOP and Business Applications .. 7
Using Relational Databases for Business Objects ... 7
Why NJDX?... 8
Development Steps with NJDX... 11
NJDX highlights .. 12

NJDX Architecture .. 15
J-Exchange (JX)... 15
.NET Jet Database Exchange (NJDX)... 15

Installation and Licensing... 19
Installing Software... 19
Running Example Programs .. 20
Licensing.. 21
Distributing NJDX Runtime Files ... 22
NJDX Release Notes & FAQs... 22

Concepts.. 23
Primitive and Complex attributes .. 23
Transient Attributes ... 23
Implicit Attributes.. 23
Virtual Attributes ... 23
Embedded Attributes ... 24
Inline Attributes ... 24
Containment by Value ... 24
Containment by Reference... 24
Collection Class ... 24
Shallow and Deep Queries... 24
Named Queries .. 24
Directed Operation Options ... 25
Object-Relational Mapping File (ORMFile) ... 25
Object-Relational Mapping Id (ORMId) ... 25
Mapping Unit... 25
Domain Model Assembly (DM_ASSEMBLY)... 26
JXResource .. 26
JXResourcePool... 26
Database URL.. 26

Object-Relational Mapping Specification ... 27
Storing Object-Relational Mapping Information... 46
Object Caching... 47

Method Details... 47
Cache Configuration .. 48
Examples.. 49

Schema Generator ... 50
Forward Engineering ... 50

Reverse Engineering .. 52
Application Programming Interface (API) ... 55

JXSession Interface.. 55
JDXS Interface... 59
Class JXResource .. 80
Class JXResourcePool ... 82
Class JDX_ORMappingPool ... 83
Class JDXException .. 84
Class JDXSQLException... 84
Class JXSessionException... 84
Class JXTransException.. 85

NJDXStudio: A Visual Studio .NET Add-In... 86
Usage ... 86
Creating a template file for an OR-Mapping specification.. 88
Reverse Engineering C# classes from an existing database schema 91
Forward-Engineering (metaCreate, metaForceCreate, metaInit, create, etc.) 95
Launch NJDXDemo to verify an OR-Mapping specification ... 96
Opening the manual and the mapping grammar from within Visual Studio 98
Changing debug level to help quickly diagnose any mapping problems 98

NJDX Usage Tips ... 100
Typical Steps for Using NJDX .. 100
Development Steps .. 101
Running with .NET 2.0.. 102
Persistent Class Definition... 102
Tips on Object-Relational Mapping Specification .. 104
Implicit Invocations of User-defined Callback Methods at Pre-defined Points 114
Specifying NJDX Predicates ... 115
Specifying Directed Operation Options... 119
Streaming Objects.. 123
Named Query... 124
NJDX Sequences ... 125
Using Stored Procedures.. 126
Bulk Updates and Deletes.. 126
Transactions and Locking.. 127
Object Caching .. 130
Connection Pooling.. 131
JX/NJDX Resource Pooling .. 132
Exception Handling Tips ... 132
Specifying Domain Model Assembly (DM_ASSEMBLY) .. 133
Multiple Schemas/Databases ... 133
NJDXDemo ... 133
Logging and Debugging .. 136
Utilities for Printing Objects.. 137
Building Applications in Visual Studio IDE ... 137
Building ASP.NET Applications with NJDX ... 138

Programming Example ... 141

Appendix 1: Example Object Model.. 146
Appendix 2: Example Source Files .. 148
Appendix 3: Sample JDX URLs... 152
Appendix 4: JDXSeqUtil.cs... 154
Appendix 5: Distributing NJDX Runtime Files .. 156

Runtime Files... 156
Appendix 6: Enhancements and Bug-Fixes... 157

Enhancements in NJDX 1.5 since NJDX 1.0 .. 157
Enhancements in NJDX 1.0 since NJDX 1.0b4 .. 157
Enhancements in NJDX 1.0b4 since NJDX 1.0b2 .. 158
Enhancements in NJDX 1.0b2 since NJDX 1.0b1 .. 158
Enhancements in NJDX 1.0b1 since NJDX 0.8 .. 158
Bug Fixes ... 158

Appendix 7: STORMTM Benchmark ... 159
Appendix 8: Troubleshooting ... 160
INDEX .. 162

Introduction

Introduction
.NET Jet Database Exchange (NJDX) technology provides a software infrastructure for bridging the gap
between object-oriented .NET programs and relational SQL databases. NJDX is based on JDX, a flexible
and market-proven object-relational mapping technology for Java/J2EE world. NJDX inherits all the great
features of JDX and blends seamlessly into the .NET infrastructure including all CLR based languages (e.g.,
Visual C# .NET, Visual Basic .NET, Visual J# .NET). In this manual, NJDX and JDX may be used
interchangeably.

OOP and Business Applications
Object-oriented programming (OOP) has become the dominant programming paradigm. In OOP languages
(e.g. C#, Java, C++), a class encapsulates the structure and behavior of objects of a certain type. Business
(domain model) objects are easier to represent as instances of classes. Examples of business objects are:
Quotations, Purchase orders, Customer info, Invoices, Patient records, Drug info, Configuration info, Product
info, Pricing info, Sales transactions, etc. The applications that create and manipulate these business objects
can come and go. So, one common need for virtually all business applications is the persistence (stable
storage) of business objects. The options for persistent storage are file systems, object-oriented databases
and relational SQL databases (RDBMS). For simple, non-mission critical applications requiring low data
volume, a file system solution may be sufficient. However, for high-performance, scalable, transactional and,
robust applications, a database management system is required for storing business objects. A study has
shown that, in spite of recent advancements in object-oriented databases, only a small percentage of the
corporate data resides in these kinds of databases. The rest resides in the trusted relational databases.
Corporations feel comfortable with the maturity of the RDBMS technology and the availability of numerous
third-party tools for analyzing and managing the data in RDBMS. It is only natural that application and tools
developers would like to represent the business objects in object-oriented languages (like C# and Java) and at
the same time use relational databases for the persistence of those objects.

Since there is already a lot of data residing in relational databases, it is also very important that the existing
data may be used in new object-oriented applications.

Using Relational Databases for Business Objects
Data is stored in rows of tables in a relational database. All rows of a table have a fixed number of typed
columns. In other words, a table is a collection of the same kind of rows. There is uniformity to the way data
is stored in relational databases. However, data in class objects may not be represented in a flat structured
way. In general, an object may have complex structure such that an attribute of an object may reference an
object (or a collection of objects) of another kind. Further, a referenced object may reference another set of
objects. Now some of these referenced objects may really be integral to the containing object (for example, a
purchase order may contain multiple line items). When a complex object needs to be made persistent in a
relational database, different components of the object may need to be put in different tables because each
table can store only one kind of row (object). It is also possible to independently store a component of an
object but later on that component should be retrievable as part of the containing object. There is an inherent
paradigm-mismatch between an object-oriented model and relational model. However, there is a genuine
need to use relational databases to store business objects. How to bridge this gap?

First need is to easily define the mapping between the object model and the relational model. The second
need is to store this mapping information in such a way that it can be used most naturally and conveniently.
Thirdly, there is need for a product to understand this mapping and do appropriate translation between the
object and relational data. That also includes the functionality of generating the relational schema definition
with the given class definitions and mapping information. The product should also be able to work with
existing schemas and be able to reverse-engineer object models and mapping information. And finally, there
is need for defining an intuitive application-programming interface (API), which will make the task of a

Introduction

programmer easier by relieving him of the burden of generating low-level SQL statements to get and store the
object data using the relational database. Software Tree has created NJDX product to meet these needs.

Why NJDX?
Simply put, NJDX bridges the gap between the worlds of objects and relations with a powerful and flexible
solution. Adhering to some well thought-out KISS (Keep It Simple and Straightforward) principles, NJDX
provides smooth integration with popular databases including Microsoft SQL Server, Oracle, IBM DB2, and
Microsoft Access.

The KISS principles (please click here for more details) that have served as the guiding philosophy behind
devlopment of NJDX include:

� Solve the most important problem in the simplest possible way
� Don’t make the solution more complex than the original problem
� Be completely non-intrusive to the object model
� Make it easy to define, modify, comprehend, and share the mapping specification
� Avoid source code generation for data access
� No mind reading
� Expose small number of simple and consistent APIs
� Optimize data access logic automatically
� Keep the internal implementation simple, extensible, and efficient
� Offer intuitive tools to deal with object models, database schema, and mapping
� Provide a straightforward installer, lucid documentation, and readymade examples

Some of the salient features of NJDX include:

• Defining mapping between an object model and a relational model using declarative specification.

• An easy-to-use GUI tool (NJDXDemo) to simplify the process of mapping specification and
verification.

• A small yet powerful set of APIs that can effectively be used by application programmers to meet
their object persistence needs using an RDBMS.

• A non-intrusive programming model, which will not change your .NET code in any way (pre-
processing or post-processing).

• The use of a highly optimized metadata-driven object-relational mapping engine that is lightweight,
dynamic, and flexible.

• High-performance object caching

• Support for persistence for business objects defined in any CLR based language including Visual C#
.NET, Visual Basic .NET, and Visual J# .NET.

• Seamless integration with Visual Studio .NET 2003 and Visual Studio 2005 to allow developers to
easily perform tasks such as defining object-relational mapping, creating database schema, reverse-
engineering C# classes from an existing database schema, and verifying OR-Mapping specification
against live data

There are 3 simple steps to use NJDX:

1. Define business objects (classes in any CLR language)

2. Define object-relational mapping

3. Develop applications using intuitive and powerful NJDX API

http://www.softwaretree.com/products/njdx/whitepaper/KISSPrinciples.pdf

Introduction

The following chapters explain the Architecture, Concepts, Object-Relational Mapping grammar, Schema
Generator, NJDXStudio, and APIs in more detail along with several examples and usage tips. The software
comes with extensive documentation and tutorials.

Before getting into formal details of the product, the following examples are provided to give you a quick feel
of the power and ease of using NJDX.

A Simple Example

Assume two C# business classes - SimpleDept and SimpleEmp. The deptId_ attribute of SimpleEmp
identifies the related SimpleDept object through the attribute dept_.

The object-relational mapping for the above object model can easily be described in the following declarative
way:

public class SimpleDept {
public int deptId_;
public String deptName_;

 public SimpleDept () {
 }

...
}

public class SimpleEmp {
public String empId_;
public int deptId_;
public String empName_;
public String title_;
public String ssn_;
public float salary_;
public System.DateTime hireDate_;
public SimpleDept dept_;

public SimpleEmp () {
}
...

}

CLASS SimpleDept TABLE Simple_Dept
PRIMARY_KEY deptId_

;
CLASS SimpleEmp TABLE Simple_Employee

PRIMARY_KEY empId_
RELATIONSHIP dept_ REFERENCES SimpleDept WITH deptId_

;

Introduction

Notice that the table names may be different from the class names. A column name can optionally be
changed from the default of the corresponding attribute name to any other name. Chapter 5: Object-
Relational Mapping Specification gives more details on the mapping specification.

Here is an example of invoking insert() API to store an instance (emp) of class SimpleEmp using NJDX
subsystem identified by a handle, jdx1:

Notice that the application programmer is shielded from low-level SQL statements. NJDX automatically
generates the required SQL INSERT statement at runtime to persist the object in the appropriate database
table.

Here is an example of retrieving all employees belonging to department 100:

Notice that the application programmer makes an object-oriented call to get the employees of department
100. NJDX generates the required SQL SELECT statements to fetch the appropriate rows, builds the
business objects and returns them to the application.

Essentially, NJDX presents an object-oriented view of the relational data through an intuitive and powerful
interface. The details of the interface are in the chapter Application Programming Interface (API).

NJDX can also generate relational schema (including table definitions) from an object model and generate C#
classes from an existing relational schema. Here is an example of a command to create a database schema for
the given object-relational mapping specification in a file abc.jdx

More details on NJDX schema generation and reverse-engineering tools can be found in the chapter Schema
Generator.

NJDXStudio

To further simplify the life of an application programmer, NJDX add-in(NJDXStudio) is provided which
tightly integrates with Visual Studio .NET 2003 and Visual Studio 2005. NJDXStudio allow developers to
achieve the following:

• Reverse-engineer C# classes from an existing database schema

• Create database schema from an existing object model

• Define object-relational mapping

• Verify OR-Mapping against a live database

NJDXStudio provides an intiutive menu and a toolbar to launch various OR-Mapping related activities, from
within the Visual Studio. Extensive help in the form of tooltips and quick help files are available for each

jdx1.insert(emp, 0, null);

int deptId = 100;
String predicate = “deptId_ =” + deptId;
ArrayList queryResults = jdx1.query(“SimpleEmp”, predicate,
 JDXS.ALL, 0, null);

NJDXSchema -create abc.jdx

Introduction

activity. For more information related to NJDXStudio, see the chapter titled “NJDXStudio: A Visual Studio
.NET Add-In.”

The following flow diagram summarizes different steps needed to develop a .NET application using NJDX.
The flow diagram also enlists typical tools, which may be used at different stages of the application
development.

Development Steps with NJDX

The TopDown steps are taken when the application development starts with a fresh object model. The
database schema may or may not exist in this case.

The BottomUp steps are taken when a new application needs to be developed using an existing schema and
the developer wants to get a jump-start by creating an object-model based on the existing schema.

The NJDXDemo utility program provides a GUI to quickly check the OR-Mapping specification against a
live database. NJDXDemo can also be invoked from within Visual Studio. NJDXDemo is explained in more
detail later in the manual.

The following pages provide a summary of the important highlights of the NJDX product.

Yes

Define
Business Classes

Define NJDX
OR-Mapping

Reverse–Engineer
Business Classes

Refine Business Classes
and OR-Mapping

Develop Application
 using intuitive NJDX APIs

Schema
Exists

Check OR -Mapping

Generate
Schema

Modeling
Tool
IDE
Editor

Editor
Program

NJDXSchema
NJDXStudio

NJDXDemo

Top Down Bottom Up

 NJDXSchema
 NJDXStudio

 NJDXStudio
 IDE
 Editor

 No

Introduction

 OR-Mapper Highlights

Object-relational mapping is one of the most complex issues to address in modern application architecture.
NJDX provides a simple, practical and robust solution to this important problem. NJDX solves the tough
problem of persistence for .NET applications by eliminating endless lines of ADO.NET/OleDB/SQL code.

You don’t need to get bogged down with overly complex methodologies and over-arching frameworks.
NJDX gives you the control you need to be an effective developer, helping you create more flexible and
higher quality applications faster.

 NJDX highlights

Simple, Non-intrusive, and Flexible Design

Smart and Elegant Mapping Specification

Support for Complex Object Modeling including Class Hierarchies

Small Set of Simple and Flexible APIs

Lightweight and Optimized Mapping Engine

Object Caching

High-performance and Scalable Implementation

Powerful and Intuitive GUI Tools (NJDXStudio and NJDXDemo)

Nifty Components and Facilities to Simplify Development

Works with Most Popular Databases, Existing Schema, and Application Servers

Easy-to-learn and Easy-to-use

Robust and Market-Proven Technology

Quick ROI

Introduction

• Simple, Non-intrusive, and Flexible Design

o Simple concepts; easy development steps; quick learning curve
o No need to inherit from a base class or implement any special interfaces
o No static generation and maintenance of large amounts of messy code; dynamic

mapping engine
o Easy evolution of object and relational models
o Flexible usage in any tier of an application – be it standalone, or ASP.NET based

• Smart and Elegant Mapping Specification

o Declarative mapping specifications based on simple grammar
o Human-readable and easily comprehensible; no need to struggle with complex XML

files
o Compact; most default mapping is automatically deduced; avoids verbosity
o Normalized and modular specification; no repetition of the same information
o Most mapping primitives are orthogonal to each other, avoiding unnecessary tight

coupling and enabling easy evolution
o Allows cross-referencing of classes and collections no matter in which order their

mappings have been defined
o Intuitive and flexible ways of mapping complex object structures
o Mappings for collections and relationships are defined at the object level, not at the

relational level; makes it easier to understand and modify such mappings
o A mapping specification can optionally be stored in and accessed from the database

• Support for Complex Object Modeling including Class Hierarchies

o Associative and aggregated relationships
o Persistence-by-reachability
o 1-to-1, 1-to-many, and many-to-many relationships
o Multiple options to store class-hierarchy objects
o Polymorphic queries

• Small Set of Simple and Flexible APIs

o Flexible query options – deep, shallow, and anything in-between. Supports loading of
partial objects, sophisticated query predicates (including path-expressions), named
queries, and powerful object-streaming functionality.

o Aggregated operations
o Flexible APIs for Stored Procedures and
o Dynamic data routing

• Lightweight and Optimized Mapping Engine

o Connection pooling
o Prepared statements
o Optimized SQL statements
o Minimal database trips
o Caching of metadata

• Object Caching

o Caching options at individual class level to improve performance
o Regular and LRU caches

• High-performance and Scalable Implementation

o Short code paths
o Optimistic concurrency control

Introduction

• Powerful and Intuitive GUI Tool (NJDXDemo and NJDXStudio)
o Excellent packaging of all the needed functionality to simplify mapping configuration

(defining and verifying OR-Mapping, creating and reverse-engineering database
schema)

o Extensive online help available at every step of the way
o Prototype queries without writing any code
o Verify OR-Mapping against a live database

• Nifty Components and Facilities to Simplify Development
o Utility components for pooling NJDX handles
o Persistently unique sequence generators
o Object-viewing facilities
o Interactive development of queries using live data
o Support for instance callback methods

• Works with Most Popular Databases and Existing Schema
o Supports Oracle, SQL Server, DB2, Access, and any OleDB data sources
o Easily reverse-engineer an object model from any existing relational schema
o Mapping-in-the-middle for existing object models and schema including stored

procedures
o Supports Trusted Connections
o APIs for SQL bypass
o Works with ASP.NET and standalone programs

• Easy-to-learn and Easy-to-use
o Clean design – not an over-engineered framework with complex semantics
o Small Set of Simple and Flexible APIs
o No learning of a new query language required
o Powerful and intuitive GUI tool
o Extensive documentation (Comprehensive user manual, API docs, tutorials, and online

help)
o Many working examples with easy-to-configure NANT scripts
o Meaningful error and debug messages to diagnose any problem
o Optional logging of all SQL statements

• Robust and Market-Proven Mapping Engine

o Underlying mapping engine has been progressively enhanced based on feedback from
thousands of users over last 8 years

o Proven enterprise-class technology being used in real-world applications
o Great customer testimonials

• Quick ROI

o More modular and better performing applications
o Increased programmer productivity
o Reduced risks and faster time-to-market

	Introduction
	OOP and Business Applications
	Using Relational Databases for Business Objects
	Why NJDX?
	Development Steps with NJDX
	 NJDX highlights

	NJDX Architecture
	J-Exchange (JX)
	.NET Jet Database Exchange (NJDX)

	Installation and Licensing
	Installing Software
	Running Example Programs
	Licensing
	Distributing NJDX Runtime Files
	NJDX Release Notes & FAQs

	Concepts
	Primitive and Complex attributes
	Transient Attributes
	Implicit Attributes
	Virtual Attributes
	Embedded Attributes
	Inline Attributes
	Containment by Value
	Containment by Reference
	Collection Class
	Shallow and Deep Queries
	Named Queries
	Directed Operation Options
	Object-Relational Mapping File (ORMFile)
	Object-Relational Mapping Id (ORMId)
	Mapping Unit
	 Domain Model Assembly (DM_ASSEMBLY)
	JXResource
	JXResourcePool
	Database URL

	
	Object-Relational Mapping Specification
	Storing Object-Relational Mapping Information
	Object Caching
	Method Details
	Cache Configuration
	Examples

	Schema Generator
	Forward Engineering
	Reverse Engineering

	 Application Programming Interface (API)
	JXSession Interface
	JDXS Interface
	Class JXResource
	Class JXResourcePool
	Class JDX_ORMappingPool
	Class JDXException
	Class JDXSQLException
	Class JXSessionException
	Class JXTransException

	
	NJDXStudio: A Visual Studio .NET Add-In
	Usage
	Creating a template file for an OR-Mapping specification
	Reverse Engineering C# classes from an existing database schema
	Forward-Engineering (metaCreate, metaForceCreate, metaInit, create, etc.)
	Launch NJDXDemo to verify an OR-Mapping specification
	Opening the manual and the mapping grammar from within Visual Studio
	Changing debug level to help quickly diagnose any mapping problems

	NJDX Usage Tips
	Typical Steps for Using NJDX
	Development Steps
	Running with .NET 2.0
	Persistent Class Definition
	Tips on Object-Relational Mapping Specification
	 Implicit Invocations of User-defined Callback Methods at Pre-defined Points
	 Specifying NJDX Predicates
	Specifying Directed Operation Options
	Streaming Objects
	 Named Query
	 NJDX Sequences
	Using Stored Procedures
	Bulk Updates and Deletes
	Transactions and Locking
	Object Caching
	Connection Pooling
	 JX/NJDX Resource Pooling
	
	Exception Handling Tips
	Specifying Domain Model Assembly (DM_ASSEMBLY)
	Multiple Schemas/Databases
	NJDXDemo
	Logging and Debugging
	Utilities for Printing Objects
	Building Applications in Visual Studio IDE
	 Building ASP.NET Applications with NJDX

	
	Programming Example
	Appendix 1: Example Object Model
	Appendix 2: Example Source Files
	
	Appendix 3: Sample JDX URLs
	Microsoft OleDB driver
	Oracle OleDB driver
	Microsoft OleDB driver
	IBM's OLE DB Provider (shipped with IBM DB2 UDB v7 or above)

	Appendix 4: JDXSeqUtil.cs
	
	Appendix 5: Distributing NJDX Runtime Files
	Runtime Files

	
	Appendix 6: Enhancements and Bug-Fixes
	Enhancements in NJDX 1.5 since NJDX 1.0
	Enhancements in NJDX 1.0 since NJDX 1.0b4
	Enhancements in NJDX 1.0b4 since NJDX 1.0b2
	Enhancements in NJDX 1.0b2 since NJDX 1.0b1
	Enhancements in NJDX 1.0b1 since NJDX 0.8
	Bug Fixes

	
	Appendix 7: STORMTM Benchmark
	Appendix 8: Troubleshooting
	INDEX

