

© 1997-2005 Software Tree, Inc, All rights reserved www.softwaretree.com

ADO.NET is a standard application-
programming interface to relational databases
defined by Microsoft. Although a useful
technology, the use of ADO.NET forces
application developers to write complex SQL
statements explicitly. This requires a lot of hand
coding of SQL statements and processing the
results. It is a very mundane, error-prone, and
time-consuming job.

NJDX Object-Relational Mapper provides an
efficient, intuitive, and object-oriented interface
to relational data. NJDX spares the application
developers from having to deal with the
complexity of working with two different
programming paradigms - object-oriented CLR
languages (C#, VB.NET, J#) and relational SQL.
As the code examples on the next page
demonstrate, NJDX boosts developer
productivity and reduces maintenance hassles
by eliminating endless lines of tedious
ADO.NET/OleDB/SQL code.

Imagine the productivity gains resulting from
such an intuitive programming interface,
avoiding impedance mismatch between two
programming models, freedom to work with
natural domain object models, greatly reduced
program size, better performance, ease of
maintenance, having tools to generate relational
schema from domain class definitions and vice-
versa, and seamless integration with the
development environment of Visual Studio.NET!

Some of the issues to consider
while using raw ADO.NET:

• Generation of SQL statements(SELECT,

INSERT, UPDATE and DELETE) for each
class

Do you have to write these
statements manually? What if you
have hundreds of classes for your
application?

• Hard coding of database column names
Aaargh….!

• What if a new attribute is added to a class

or an attribute name changes?
All corresponding statements have
to be updated.

• What if an attribute type changes?

The getter call has to be changed
appropriately. May involve database
changes also.

• What if a class hierarchy is involved (e.g.,

a class PoliticalTitle may inherit from Title
and its objects may come from a different
table)?

We have to potentially collect
objects from multiple tables. Lots of
changes at many levels.

• What if the class structure is more

complex (more references, more levels)?
The code becomes exponentially
complex!

• What if we want to do directed queries for

a complex object (i.e., follow some
references and ignore a few of them etc.)?

How to specify such a query?
Do we repeat the hard-coded SQL
statements in different parts of the
code?

• How easily can this code be maintained /

enhanced?

• Wouldn’t you rather be devoting more
time to business logic?

 Beyond ADO.NET

© 1997-2005 Software Tree, Inc, All rights reserved www.softwaretree.com

ADO.NET Code

// Assuming a Connection object ‘conn’
// to the database has been obtained.
// Retrieve a Title object.

// Create a command object
String query="SELECT title_id, type,

price, title, ytd_sales, pub_id,
pubdate, royalty, advance, notes FROM
title s " + "WHERE title_id = '" + tid
+ "'";

SqlCommand cmd = new SqlCommand(query,
conn);

// Declare the SqlDataReader
SqlDataReader rdr=null;
rdr=cmd.ExecuteReader();

Title title = new Title();
while (rdr.Read()) {

// Get the results of each column
title.title_id=(string)rdr["title_id"

];
title.type=(string)rdr["type"];
title.price=(decimal)rdr["price"];
title.title=(string)rdr["title"];
title.ytd_sales=int)rdr["ytd_sales"];
title.pub_id=(string)rdr["pub_id"];
title.pubdate=System.DateTime)rdr["pu

bdate"];
title.royalty=(int)rdr["royalty"];
title.advance=(decimal)rdr["advance"]

;
title.notes=(string)rdr["notes"];
break; // Read only first record

}
rdr.Close();

ArrayList royScheds=new ArrayList();
RoySched rSch;

query="SELECT title_id, lorange, hirange,
royalty FROM roysched " +

" WHERE title_id = '" +
title.title_id + "'" + "order by
royalty";

// Open another Sqldatareader for
// the roysched table SqlDataReader

rdr1=null;
SqlCommand cmd1=new SqlCommand(query,

conn);

rdr1 = cmd1.ExecuteReader();

while(rdr1.Read()) {
rSch=new RoySched();
rSch.title_id=(string)rdr1["title_id"];
rSch.lorange=(int)rdr1["lorange"];
rSch.hirange=(int)rdr1["hirange"];
rSch.royalty=(int)rdr1["royalty"];
royScheds.Add(rSch);

}
rdr1.Close();

title.royscheds=new
RoySched[royScheds.Count];

royScheds.CopyTo(title.royscheds);

By using NJDX, similar efficiencies are also gained for inserting, updating, or deleting objects.

NJDX, NJDX logo, Software Tree, Software Tree logo are trademarks of Software Tree. .NET, ADO.NET, C# are trademarks of Microsoft.

Title RoySched

ADO.NET vs. NJDX Example: Assume 2 classes – Title and RoySched. Each Title object
has an array of RoySched objects. Primitive attributes of Title objects come from titles table and that
of RoySched objects come from roysched table. Using C# language, we are trying to retrieve Title
object(s) corresponding to a title_id stored in a String variable ‘tid’.

NJDX Code

// Assuming a handle ‘njdx1’ to the
// NJDX service object has been
// obtained.
// Retrieve the Title object(s).
// In general, many qualifying objects
// may be returned.

System.Collections.ArrayList
queryResults=njdx1.query("Title",
"title_id = '” + tid + “’", -1,
0, null);

