

©1997-2002 Software Tree www.softwaretree.com

SIMPLIFYING DATA INTEGRATION – LINKING

JAVA™ OBJECTS TO RELATIONAL DATABASES
TECHNOLOGY WHITE PAPER

For more information, contact:
Software Tree, Inc.
650 Saratoga Ave. San Jose, CA
95129
P: 408-557-6769
F: 408-557-6799
Email: info@softwaretree.com
http://www.softwaretree.com/

©1997-2002 Software Tree www.softwaretree.com

J-DATABASE EXCHANGE
TM (JDX TM)

Object-oriented programming (OOP) has
become the dominant programming paradigm
these days. In OOP languages (e.g. Java,
C++), a class encapsulates the structure and
behavior of objects of a certain type. Business
objects are easier to represent as instances of
these classes.

One common need for virtually all business
applications is the persistence (stable
storage) of business objects. The options for
persistent storage are file systems, object-
oriented databases and relational SQL
databases (RDBMS). For simple, non-mission
critical applications requiring low data volume,
a file system solution may be sufficient. For
high performance, scalable, transactional and
robust applications, a database management
system is required for storing business
objects.

Relational database management systems
provide a popular and pragmatic repository for
these business objects because of the
maturity of the RDBMS technology and the
availability of numerous third-party tools for
analyzing and managing the relational data.
However, there is an inherent conceptual
paradigm-mismatch (also known as
impedance mismatch) between an object-
oriented model and a relational model.
Furthermore, SQL as the standard language

of interface for relational databases does not
mix well with an OOP language like Java.
However, there is a genuine need to use
relational databases to store business objects.
How to bridge this gap?

First need is to easily define the mapping
between the object model and the relational
model. The second need is to store this
mapping information such that it can be used
most naturally and conveniently. Thirdly, there
is need for a product to understand this
mapping and do appropriate translation
between the object and relational data. That
also includes the functionality of generating
the relational schema definition given the
class definitions and the mapping information.
And finally, there is need for defining an
intuitive application-programming interface
(API), which will make the task of a
programmer easier by relieving him of the
burden of generating low-level SQL
statements to store/get the object data
into/from the relational database.

Software Tree provides an innovative solution
to define the mapping between an object
model and a relational model. We also
describe an API that can effectively be used
by application programmers to meet their
object persistence needs using an RDBMS.
The name of our product is JDX, which stands
for J-Database Exchange.

Copyright ©1997-2002 Software Tree www.softwaretree.com

WHAT IS JDX?

JDX is a high-performance, cross-platform,
developer friendly and cost effective solution for
transactional persistence of Java objects using
relational databases. JDX’s object-relational
mapping (OR-Mapping) technology provides a
natural object-oriented interface to relational data.
It supports complex-object modeling including
class-hierarchies, provides integration with legacy
data and employs a scalable architecture.

JDX’s adaptable design and 100% Java
implementation makes it usable in any tier of a
Java application – be they standalone, JSP/Servlet
based or EJB based.

Using JDX requires three simple steps:

1. Define business objects (Java Classes),
2. Define object-relational mapping and,
3. Develop application using intuitive and

powerful JDX API’s.

WHY JDX? WHY CAN'T WE USE JDBC
TO STORE JAVA OBJECTS IN RDBMS?

JDBC is a Java application programming interface
to SQL databases defined by Sun. Although this is
a useful technology, the use of JDBC forces
application developers to generate SQL
statements explicitly. This requires a lot of hand
coding of SQL statements and then processing the
results. It is a very mundane and time-consuming
job.

Just to give an idea of how JDX can simplify the
program development task of retrieving Java
objects from the database, the following is an
example of appropriate code segments - one using
JDBC and the other using JDX.

For this example, we assume 2 classes - Title and
RoySched (Shown in right panel) Each Title object
has an array of RoySched objects. Primitive
attributes of Title objects come from titles table and
that of RoySched objects come from roysched
table. We are trying to retrieve Title object(s)
corresponding to a title_id stored in a String
variable 'tid'.

Java Classes Definitions

Here are the Java class definitions for the
examples used in this white paper. They are
based on the sample database 'pubs' which
comes with Microsoft SQL Server (version 6.5)
RDBMS.

RoySched (table roysched)
public class RoySched implements
java.io.Serializable {

public String title_id;
public int lorange;
public int hirange;
public int royalty;

}

Title (table titles)
public class Title implements

java.io.Serializable {
public String title_id;
public String title;
public String type;
public String pub_id;
public java.math.BigDecimal price;
public java.math.BigDecimal advance;
public int royalty;
public int ytd_sales;
public java.sql.Timestamp pubdate;
public String notes;
public RoySched[] royscheds; //
Array of RoySched objects for this
title

}

Copyright ©1997-2002 Software Tree www.softwaretree.com

RAW JDBC VERSUS JDX

That's it! Similar efficiencies are also gained for inserting, updating or deleting objects. JDX imp

program de�elopment process b� eliminating the need for hand coding of S!" statements. The resulting

code is �er� intuiti�e, simple and, eas� to maintain.

That's it! Similar efficiencies are also gained for inserting, updating or deleting objects. JDX improves
program development process by eliminating the need for hand coding of SQL statements. The
resulting code is very intuitive, simple and, easy to maintain. All the SQL code is dynamically
generated at runtime that avoids messy alternative approaches, which generate intrusive SQL code
statically.

Following section highlights the issues associated with using raw JDBC in application code.

JDBC CODE:

// Assuming a Connection object 'con' has
// been obtained to the database.

// Retrieve the Title object

Statement stmt = con.createStatement();

// First fetch the titles table row

String query = "SELECT title_id, type,
price, title, ytd_sales, pub_id," +
" pubdate, royalty, advance, notes FROM
titles " + " WHERE title_id = '" + tid +
"'";

ResultSet rs = stmt.executeQuery(query);

Title title = new Title();

while (rs.next()) {
title.title_id =
rs.getString("title_id");
title.type = rs.getString("type");
title.price = rs.getBigDecimal("price",
2);
title.title = rs.getString("title");
title.ytd_sales =
rs.getInt("ytd_sales");
title.pub_id = rs.getString("pub_id");
title.pubdate =
rs.getTimestamp("pubdate");
title.royalty = rs.getInt("royalty");
title.advance =
rs.getBigDecimal("advance",2);
title.notes = rs.getString("notes");
break; // Simplifying assumption –

// only one row is returned.
}

// Now fetch all the corresponding
// roysched table rows

Vector royScheds = new Vector();
RoySched roySched;

query = "SELECT title_id, lorange,
hirange, royalty FROM roysched" +

" WHERE title_id='" + title.title_id
+ "'" + " ORDER BY royalty";

rs = stmt.executeQuery(query);

while (rs.next()) {
roySched = new RoySched();
roySched.title_id =
rs.getString("title_id");
roySched.lorange =
rs.getInt("lorange");
roySched.hirange =
rs.getInt("hirange");
roySched.royalty =
rs.getInt("royalty");
royScheds.addElement(roySched);

}
stmt.close();

// Initialize title's royscheds
// attribute with the collection of
// roysched objects

title.royscheds = new
RoySched[royScheds.size()];

royScheds.copyInto(title.royscheds);

JDX CODE:

// Assuming a handle 'jdx' to the JDX
// service object has been obtained.
// Retrieve the Title object(s). In
// general, many qualifying objects may
// be returned.

Vector queryResults = jdx.query("Title",
"title_id

= '" + tid + "'", -1, 0, null);

Title title = (Title)
queryResults.firstElement();

Copyright ©1997-2002 Software Tree www.softwaretree.com

ISSUES WITH USING RAW JDBC

�� Generation of SQL statements
(SELECT, INSERT, UPDATE and
DELETE) for each class
You have to write these statements
manually.
What if you have hundreds of classes for
your application?

�� Hard coding of database column
names

A a a r g h !
�� What if a new attribute is added to a

class?
All corresponding statements have to be
updated.

�� What if an attribute name changes?
All corresponding statements have to be
updated.

�� What if an attribute type changes? The
getXXX call has to be changed
appropriately. May involve database
changes also.

�� What if a class hierarchy is involved
(e.g., a class PoliticalTitle may inherit
from Title and its objects may come
from a different table)?
We have to potentially collect objects from
multiple tables. Lots of changes at many
levels.

�� What if the class structure is more
complex (more references, more
levels)?
The code becomes exponentially
complex!

�� What if we want to do directed queries
for a complex object (i.e., follow some
references and ignore a few of them
etc.)?
How to specify such a query?
Do we repeat the hard-coded SQL
statements in different parts of the code?

�� How about directed insert, update, and
delete operations?
Same issues as above.

�� How to define and use complex
relationships between objects?
Can you easily define a notion of an
object contained by value or by
reference? How to implement
persistence-by -reachability?

�� How scaleable is such an
implementation?
Each application has to get its own
connection to the database.
The application process is directly talking
to the database server, which may be
many networking hops away.

�� How easy is the code to share between
multiple applications?
Does each programmer in the team have
to know where different components of an
object are stored and how they are
connected (primary keys, foreign keys)?

�� What if you want to use a new JDBC
driver?
Do all JDBC drivers behave the same?
Do they map uniformly?

�� Do you have tools to generate schema
definition given your class definitions?
Can you define Java classes based on
existing relational data? What if you
want to move your application to a
different backend database?
Schema generation tool. Use of different
JDBC drivers.

�� Do you like mixing SQL with Java?
Paradigm mismatch between object and
relational views.

�� How easily can this code be
maintained/enhanced?
Is a lot of time spent developing,
debugging and enhancing this type of
code?
Would you rather be devoting more time
to business logic?

�� How thick you want your
application/applet to be?
All object-relational mapping code and the
JDBC driver code may be attached to
your application/applet.

Copyright ©1997-2002 Software Tree www.softwaretree.com

WHY JDX AS A SOLUTION?

Persistence of business objects using RDBMS is an important requirement for modern
applications that are mostly developed on Java platform. However, there is an inherent
paradigm-mismatch between the Java object model and the SQL relational model. JDX OR-
Mapping technology seamlessly bridges the gap between the two models by providing a very
natural and powerful object oriented interface to store and retrieve Java business objects. JDX
can generate database schema from Java object models (class definitions) and vice-versa. JDX
leverages JDBC standard but hides all its complexities and thereby helps achieve significant
reductions in overall time, risk and cost associated with Java database programming.

JDX uses a clean, non-intrusive approach, which does not require any pre-processing or post-
processing of Java code. JDX, itself, is implemented in 100% Java making it portable to every
Java enabled platform. JDX’s adaptable and extensible design makes it usable in any tier of a
Java/J2EE application.

Accelerate development lifecycle by avoiding tedious, time-consuming and error-prone tasks of
low-level JDBC/SQL programming for persistence of business objects.

Accelerate data movement by using JDX’s fine-tuned object-relational mapping engine.

Accelerate your Java/Servlets/JSP/EJB projects by concentrating on business logic instead of
wasting time on infrastructure details.

http://www.softwaretree.com/products/jdx/Jdx1.htm

 From Software Tree - enjoy the fruits!

©1997-2002 Software Tree. All rights reserved. Software Tree, JDX, Software Tree logo, JDX logo are
trademarks of Software Tree, Inc. Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States and other countries. All other company and product names
mentioned are used for identification purposes only and may be trademarks of their respective owners. This
document is provided for informational purposes only, and the information herein is subject to change
without notice. Please report any errors herein to Software Tree. Software Tree does not provide any
warranties covering and specifically disclaims any liability in connection with this document.

