
The KISS (Keep It Simple and Straightforward) Principles
for OR-Mapping Products from Software Tree, Inc

A White Paper

by

Damodar Periwal

The KISS Principles Introduction

Using object-relational mapping (OR-Mapping,
a.k.a. ORM) technology to bridge the
impedance mismatch between object-oriented
programs and relational databases has
become a well-established programming
practice for modern applications. Eliminating
large amount of complex, non-intuitive, and
error-prone JDBC/ADO.NET/SQL code surely
improves productivity. Good isolation of data
integration layer promotes design clarity and
facilitates easier maintainability of the system.

OR-Mapping products come in different
shapes and sizes. Many large and small
companies, in-house development teams, and
open-source communities offer these
products. While all of these products aim for
simplifying the data integration aspects of an
application, they sometimes vary in
approaches used for defining the mapping
between object and relational models, and
accomplishing the runtime data exchange.
Each product has its own set of features and
advantages.

1. Solve the most important problem (object
relational impedance mismatch) in the
simplest possible way.

2. Don’t make the solution more complex
than the original problem.

3. Be completely non-intrusive to the object
model.

4. Give full flexibility in object modeling.
5. Make it easy to define, modify,

comprehend, and share the mapping
specification.

6. Avoid source code generation for data
access.

7. Keep the mapping engine as much
stateless as possible.

8. No mind reading.
9. Avoid creating a new query language.
10. Expose small number of simple and

consistent APIs.
11. Absorb database-specific dependencies

in the internal implementation.
12. Provide simple and intuitive pass-thru

mechanisms for accessing databases
directly.

13. Optimize data access logic
automatically.

14. Stick to 90/90 rule about product
features.

15. Keep the internal implementation simple,
extensible, and efficient.

16. Offer intuitive tools to deal with object
models, database schema, and the
mapping.

17. Provide a straightforward installer, lucid
documentation, and readymade
examples.

This white paper is not about comparing
feature-lists of different OR-Mapping products.
Instead, it’s going to describe the KISS (Keep
It Simple and Straightforward) principles
followed in the design and development of
Software Tree’s OR-Mapping products, JDX™
and NJDX™. JDX is an OR-Mapping product
for the Java platform whereas NJDX is an OR-
Mapping product for the .NET platform. Both
JDX and NJDX share similar internal designs
and expose similar interfaces.

The paper concludes with the essential and
cumulative benefits of following these KISS
principles.

©2005 Software Tree, Inc., All rights reserved; permission to copy granted, provided copyright and
permission notice included; no permission granted to modify content.

The KISS Principles in JDX and NJDX OR-Mappers

Following are the main KISS principles along with their explanation, rationale, and advantages.
They are not in any particular order of importance.

• Solve the most important problem (object relational impedance mismatch) in the

simplest possible way.

The most important problem for developers is writing and maintaining endless lines of
complex JDBC/ADO.NET/SQL code to exchange data between their business objects
and their relational artifacts (tables, stored procedures). Make solving that problem the
main focus of the product.

Advantages: The OR-Mapping product focuses on the most important problem and
solves it efficiently.

• Don’t make the solution more complex than the original problem.

Providing an OR-Mapping solution that solves the problem at the expense of exposing a
needlessly complex programming model nullifies the advantages offered by using the
solution.

Don’t make the developer jump through many hoops just to be able to use your product.
Minimize the number of steps and the number of additional files needed by using your
OR-Mapper. Avoid adding steps like preprocessing, source code generation, and
compilations. Avoid the need to create many different mapping or helper files.
Essentially, don’t encumber the design, coding, build, and deployment processes with
many logistics operations and additional steps.

Advantages: Rather than becoming a development headache, the OR-Mapper improves
developer productivity.

• Be completely non-intrusive to the object model.

Don’t impose any rules on business class definitions. Allow developers to use POJOs
(Plain Old Java Objects) or POCOs (Plain Old CLR Objects). Don’t require any
superclasses, superinterfaces, or proxy objects in business class definitions. Avoid byte
code or IL code manipulations.

Advantages: A clean object model helps in easier implementation and smoother
evolution of business logic. Additionally, remote clients can be sent the serialized POJOs
or POCOs without requiring the remote application to include any of the OR-Mapping
product specific libraries, which it does not need otherwise. It also reduces runtime
dependencies.

• Give full flexibility in object modeling.

Object modeling should be orthogonal to OR-Mapping. The developer should be able to
create a flexible object-oriented domain model per business needs without having to
worry about how to persist that model in a relational database. In other words, don’t
impose any restrictions on class definitions just because they have to be used with OR-
Mapper. Support class-hierarchies, associations and aggregations. Support one-to-one,

©2005 Software Tree, Inc., All rights reserved; permission to copy granted, provided copyright and
permission notice included; no permission granted to modify content.

one-to-many, and many-to-many relationships. Support deep/shallow operations, lazy
fetches, and persistence-by-reachability.

Advantages: Adherence to a true domain model helps in better design and integration

• Make it easy to define, modify, comprehend, and share the mapping specification.

Mapping specification is the heart of an OR-Mapper. Keeping the mapping separate from

apping should be defined externally and in a declarative way based on simple

ML, although declarative, is not preferable for mapping specification because it is

utting mapping in source files (through annotations or attributes), although declarative,

 Clutters source code.
 or reprocessing of the source files for even trivial mapping

• e source code or requires changing the source code

• g specification.
 code

So, keep the mapping specification for all the persistent classes of a logical mapping unit

antages: The OR-Mapping system is easy to understand, use, and manage.

• void source code generation for data access.

Although automatic source code generation alleviates the problem of writing tedious and

reate a metadata-driven mapping engine that can be leveraged across any object or

dvantages: Avoiding source code generation creates a simpler, cleaner, and more

of the application.

the object class definition (source files) is an important decoupling principle.

M
grammar. Make the specification compact; most default mapping should be automatically
deduced. Avoid verbosity.

X
neither simple to write nor easy to comprehend.

P
is not preferable because of the following disadvantages:

•
• Requires recompilation

change during development.
Requires the knowledge of th
and its recompilation for any deployment time configuration.
There is no one place to get a full, clear picture of the mappin

• Provides no way to deal with legacy or third-party classes for which no source
may be available.

at one place for easy inspections and modifications. Allow multiple mapping units to be
used in one application to promote better partitioning of the application logic.

 Adv

A

repetitive low-level infrastructure code for data access, it unfortunately imposes
maintenance burden of huge amounts of such complex auto-generated source code.
Besides, the source code for data access needs to be regenerated for the slightest
change in the object model or the relational model. There is also the additional step and
overhead of recompiling such code in your application.

C
relational model. Take advantage of reflection facility of the underlying platform to avoid
dependence on source code generation.

A
dynamic solution.

©2005 Software Tree, Inc., All rights reserved; permission to copy granted, provided copyright and
permission notice included; no permission granted to modify content.

• Keep the mapping engine as much stateless as possible.

bjects in the application. The
detached model lets the objects have their own lifecycle. From an OR-Mapper point of

ges: The mapping engine remains simple and focused. It does not create
nnecessary runtime overhead of tracking the state of every persistent object. This

• No mind reading.

ing by making presumptions about the intentions of the user about the
ersistence of an object based on certain access patterns. You can never be 100% sure

aving changes
at the user did not intend to be saved. The user remains firmly in control. The user

• Avoid creating a new query language.

y details to be complete and useful. Don’t impose
mantics on developers. Don’t create complex

erhead
lated to query parsing and compilation speeds up internal implementation.

• Expose small number of simple and consistent APIs.

t of APIs. Design APIs

stent way. Avoid exposing every

 of APIs also helps in maintaining backward compatibility.

• Absor

L) as per the
versions

Don’t worry about how the developer uses the business o

view, don’t be attached to those objects. Don’t waste cycles in keeping track of their
states.

Advanta
u
results in better performance.

Avoid mind read
p
that just because the user modified an object, it should be updated in the database. Let
the user decide and direct the mapping engine what to do and when. If the developer
has to explicitly invoke insert, delete, and query operations anyway, he can also explicitly
invoke an update operation when the application semantics requires that.

Advantages: The mapping engine does not cause data corruption by s
th
does not have to worry about telling the OR-Mapping engine about which objects not to
save even though they might have been changed in the course of executing some
business logic. The usage of an OR-Mapping engine is simple and straightforward.

New query languages require too man
new query languages and complex se
expression builder APIs. Leverage SQL’s well-understood expressive power for creating
predicates. Abstract other query-related parameters in simple and intuitive APIs.
.
Advantages: Fast learning curve. Easy-to-understand programs. Avoiding the ov
re

Think through all the possible use cases and provide a minimal se
that are extensible and expose new features in a consi
new feature with new APIs.

Advantages: Avoids API bloat that can otherwise make the product confusing and

arder to use. Small numberh

b database-specific dependencies in the internal implementation.

Automatically issue appropriate SQL statements (both DDL and DM
backend database. For data exchange, do appropriate runtime data type con
between the object field data types and the table column data types. Absorb any
behavioral differences of different database drivers within the OR-Mapping
implementation.

©2005 Software Tree, Inc., All rights reserved; permission to copy granted, provided copyright and
permission notice included; no permission granted to modify content.

Advantages: Applications become database and driver independent. They can easily be
orted from one database to another.

• Pro ide simple and intuitive pass-thru mechanisms for accessing databases directly.

functionality through the OR-Mapping interface. So provide simple APIs that can be used

meet those rare
eeds of directly accessing the underlying database system without having to go around

• ptimize data access logic automatically.

nsuming operation. Minimize database trips,
use prepared statements where possible, use connection pools, allow bulk operations,

out much extra effort on the part of the developer.

• Stick to 90/90 rule about product features.

eet 100% of the needs of 100% of the users.
 the needs of at least 90% of the users.

. Implementation is
ot overloaded with unnecessary or rarely-used features.

• Keep the internal implementation simple, extensible, and efficient.

ome at the cost of a
s, write modular and

• ffe eal with object models, database schema, and the mapping.

or
-

 Reverse-engineer object models from an existing database schema

p

v

One can never fully anticipate and provide for all the possible usage of relational

to execute arbitrary SQL statements against the underlying data source.

Advantages: A simple pass-thru interface can help the developer easily
n
the OR-Mapping system.

O

Data access is typically the most time-co

and provide object caching. The more automatic and implicit these operations are, the
easier the product would be to use.

Advantages: High performance with

You can never create a product that can m
Create a product that can meet at least 90% of
Don’t add features that are rarely used and are hard to implement.

Advantages: A practical product that is easy-to-understand and use
n

External simplicity of an OR-Mapping product does not have to c
complex internal implementation. Follow best programming practice
thread-safe code, create reusable components, minimize the code path lengths, and
cache and reuse static metadata. Don’t over-engineer any module. Don’t create
dependencies on non-standard libraries. Deliver the product with one runtime library that
depends only on the virtual machine and standard database drivers.

Advantages: A fast, robust, and lightweight implementation.

O r intuitive tools to d

A good OR-Mapping product should come with easy-to-use tools to deal with new
existing object models and new or existing database schemas. Provide both command
line and GUI tools to accomplish the following tasks:

• Forward-engineer a database schema from an object model
•

©2005 Software Tree, Inc., All rights reserved; permission to copy granted, provided copyright and
permission notice included; no permission granted to modify content.

• Verify mapping with live data.

v e legacy data for OR-Mapping. Streamlining of
development process by quick synchronization of object and relational models.

• Pro ide a straightforward installer, lucid documentation, and readymade examples.

ny
d

understanding and usage of the product, resulting in improved productivity.

ummary

s identified and discussed the main principles of simplicity (KISS) that we
d in designing and developing our OR-Mapping products. It also explains the

does not mean not providing essential features. Simplicity does not mean being
nsophisticated. Simplicity does not mean lacking performance. Simplicity is not a position of

above have helped us create fast, flexible, versatile, lightweight,
bust, database-agnostic, and easy-to-use OR-Mappers™, JDX™ for Java and NJDX™ for

cknowledgements

hank Richard
Neha

Ad antages: Easy to leverag

Simplified integration with script-based configuration and deployment facilities. Easy
verification of mapping specification helps in rapid prototyping and painless diagnosis of
any mapping problems.

v

Installer, documentation, and example programs provide a crucial help in introducing a
technology quickly and properly. Make the product installation simple an
straightforward. Set or modify the needed environment variables automatically. Provide
extensive documentation with comprehensive user manuals, detailed explanations of
APIs, plenty of ready-to-run example programs, and tutorials.

Advantages: Easy installation, lucid documentation, and working examples simplify the

S

This white paper ha

ave followeh
importance and advantages of these principles for creating a practical, efficient, and user-friendly
solution.

Simplicity
u
compromise; rather it’s a position of strength. Penchant for simplicity often leads to elegance,
robustness, and ease-of-use.

The KISS principles explained
ro
.NET. Resulting technologies are easy to understand, extend, adapt, and integrate. JDX tools
have been tightly integrated with Borland JBuilder IDE. NJDX tools have been tightly integrated
with Microsoft Visual Studio .NET IDE. JDX has been shipping since early 1998. NJDX was
released in late 2005. Free evaluation versions of both products are available from Software
Tree’s web site at http://www.softwaretree.com.

A

The author would like to t

rewster, Prashant Periwal, and B
Sharma for reviewing this paper and
offering valuable feedback to improve
the contents and the presentation of the
material.

About The Author
Damodar Periwal is the founder and President of

 He is the architect and designer oSoftware Tree, Inc. f
JDX and NJDX OR-Mapping products. Damodar has an
extensive background in databases, transaction
processing, and distributed and object-oriented
technologies. He has more than 22 years of industry
experience having worked at leading companies like
Tandem Computers, Ashton-Tate, Borland International,
and TIBCO. He has an MS (Comp Sc) degree from
University of Wisconsin (Madison) and an undergraduate
engineering degree from Birla Institute of Technology
and Science, Pilani (India). You can contact Damodar at
dperiwal@softwaretree.com.

©2005 Software Tree, Inc., All rights reserved; permission to copy granted, provided copyright and
permission notice included; no permission granted to modify content.

mailto:dperiwal@softwaretree.com

Note: Java is a trademark of Sun Microsystems. .NET is a trademark of Microsoft. JDX, NJDX, JDX logo, NJDX logo,

The KISS OR-Mapper, Software Tree logo are trademarks of Software Tree, Inc. All other brands and product names
are trademarks or registered trademarks of their respective holders.

©2005 Software Tree, Inc., All rights reserved; permission to copy granted, provided copyright and
permission notice included; no permission granted to modify content.

http://www.softwaretree.com/products/jdx/JDXHighlights.htm
http://www.softwaretree.com/
http://www.softwaretree.com/products/njdx/NJDXHighlights.htm

	The KISS (Keep It Simple and Straightforward) Principles
	for OR-Mapping Products from Software Tree, Inc
	Introduction
	The KISS Principles in JDX and NJDX OR-Mappers
	Summary
	Acknowledgements

